323 research outputs found

    HyperINR: A Fast and Predictive Hypernetwork for Implicit Neural Representations via Knowledge Distillation

    Full text link
    Implicit Neural Representations (INRs) have recently exhibited immense potential in the field of scientific visualization for both data generation and visualization tasks. However, these representations often consist of large multi-layer perceptrons (MLPs), necessitating millions of operations for a single forward pass, consequently hindering interactive visual exploration. While reducing the size of the MLPs and employing efficient parametric encoding schemes can alleviate this issue, it compromises generalizability for unseen parameters, rendering it unsuitable for tasks such as temporal super-resolution. In this paper, we introduce HyperINR, a novel hypernetwork architecture capable of directly predicting the weights for a compact INR. By harnessing an ensemble of multiresolution hash encoding units in unison, the resulting INR attains state-of-the-art inference performance (up to 100x higher inference bandwidth) and can support interactive photo-realistic volume visualization. Additionally, by incorporating knowledge distillation, exceptional data and visualization generation quality is achieved, making our method valuable for real-time parameter exploration. We validate the effectiveness of the HyperINR architecture through a comprehensive ablation study. We showcase the versatility of HyperINR across three distinct scientific domains: novel view synthesis, temporal super-resolution of volume data, and volume rendering with dynamic global shadows. By simultaneously achieving efficiency and generalizability, HyperINR paves the way for applying INR in a wider array of scientific visualization applications

    A Significant Increase of RNAi Efficiency in Human Cells by the CMV Enhancer with a tRNAlys Promoter

    Get PDF
    RNA interference (RNAi) is the process of mRNA degradation induced by double-stranded RNA in a sequence-specific manner. Different types of promoters, such as U6, H1, tRNA, and CMV, have been used to control the inhibitory effect of RNAi expression vectors. In the present study, we constructed two shRNA expression vectors, respectively, controlled by tRNAlys and CMV enhancer-tRNAlys promoters. Compared to the vectors with tRNAlys or U6 promoter, the vector with a CMV enhancer-tRNAlys promoter silenced pokemon more efficiently on both the mRNA and the protein levels. Meanwhile, the silencing of pokemon inhibited the proliferation of MCF7 cells, but the induction of apoptosis of MCF7 cells was not observed. We conclude that the CMV enhancer-tRNAlys promoter may be a powerful tool in driving intracellular expression of shRNA which can efficiently silence targeted gene

    AudioInceptionNeXt: TCL AI LAB Submission to EPIC-SOUND Audio-Based-Interaction-Recognition Challenge 2023

    Full text link
    This report presents the technical details of our submission to the 2023 Epic-Kitchen EPIC-SOUNDS Audio-Based Interaction Recognition Challenge. The task is to learn the mapping from audio samples to their corresponding action labels. To achieve this goal, we propose a simple yet effective single-stream CNN-based architecture called AudioInceptionNeXt that operates on the time-frequency log-mel-spectrogram of the audio samples. Motivated by the design of the InceptionNeXt, we propose parallel multi-scale depthwise separable convolutional kernels in the AudioInceptionNeXt block, which enable the model to learn the time and frequency information more effectively. The large-scale separable kernels capture the long duration of activities and the global frequency semantic information, while the small-scale separable kernels capture the short duration of activities and local details of frequency information. Our approach achieved 55.43% of top-1 accuracy on the challenge test set, ranked as 1st on the public leaderboard. Codes are available anonymously at https://github.com/StevenLauHKHK/AudioInceptionNeXt.git

    Enhancement of Cement Paste with Carboxylated Carbon Nanotubes and Poly(Vinyl Alcohol)

    Get PDF
    Cement has been a major consumable material for construction in the world since its invention, but its low flexural strength is the main defect affecting the service life of structures. To adapt cement-based materials to a more stringent environment, carboxylated carbon nanotubes (CNTs-COOH) and poly(vinyl alcohol) (PVA) are proposed to enhance the mechanical properties of cement paste. This study systematically verifies the synergistic effect of CNTs-COOH/PVA on the performance of cement paste. First, UV-Vis spectroscopy and FTIR spectroscopy prove that CNTs-COOH can provide attachment sites for PVA and PVA can improve the dispersion and stability of CNTs-COOH in water, which demonstrates the feasibility of synergistically enhancing cement paste. When a 0.015% CNTs-COOH suspension with 0.1% PVA is added, the flexural strength of the cement paste increases by 73, 32, and 42% compared with control specimens at curing ages of 3, 7, and 28 days, respectively. The strength enhancement mechanism is revealed from the aspects of cement matrix enhancement and interface enhancement. Thermogravimetric (TG) analysis and mercury intrusion porosimetry (MIP) prove that CNTs-COOH can enhance the hydration degree of the cement matrix and fill the pores introduced by PVA. Based on the fact that PVA can improve the dispersibility and the nucleation site effect of CNTs-COOH in cement paste, molecular dynamics simulation confirms that PVA can bridge CNTs-COOH and C-S-H to enhance the interfacial bonding by 64.1%

    Winter Daytime Warming and Shift in Summer Monsoon Increase Plant Cover and Net CO2 Uptake in a Central Tibetan Alpine Steppe Ecosystem

    Get PDF
    Over the past decades, human-induced climate change has led to a widespread wetting and warming of the Tibetan Plateau (TP), affecting both ecosystems and the carbon cycling therein. Whether the previously observed climate changes stimulate carbon uptake via enhanced photosynthesis or carbon loss via enhanced soil respiration remains unclear. Here we present 14Ā years of observations of carbon fluxes, meteorological variables and remotely sensed plant cover estimations from a central Tibetan alpine steppe ecosystem at Nam Co, the third largest lake on the TP. Using modified Mann-Kendall trend tests, we found a significant increasing daily net carbon uptake of 0.5Ā gĀ CĀ māˆ’2Ā decadeāˆ’1, which can be explained by a widespread greening at the southern shore of lake Nam Co. The Plateau-wide changes in temperature and precipitation are locally expressed as an increasing diurnal temperature range during winter, higher water availability during spring, higher cloud cover during early summer and less water availability during late summer. While these changes differ over the course of the year, they tend to stimulate plant growth more than microbial respiration, leading to an increased carbon uptake during all seasons. This study indicates that during the 14Ā years study period, a higher amplitude in winter temperatures and an earlier summer monsoon promote carbon uptake in a central Tibetan alpine steppe ecosystem

    Research on the Leading Value Drive of Rural Homestead Transfer under Rural Revitalizationā€”ā€”Based on the Evidences of China

    Get PDF
    With the development of urban-rural integration in China, the functional value of homestead bases has evolved from a single residential security value to a multiple composite values, and the property income of homestead bases has gradually become the value driver of transfer and the intrinsic demand of farm households. This paper takes Baitafan of Jinzhai County, Chongqing City, and Xiaofang Yu Village of Ji County as examples for in-depth discussion, and finds that the dominant value drivers of home base transfer mainly include three kinds: capitalization income, commercialization income, and non-farm employment income. The study concludes that it is important to give full play to the resource endowment effect and identify the dominant value of home base transfer according to local conditions to promote the standardized home base transfer and implement the rural revitalization strategy

    The Relative Risk and Incidence of Immune Checkpoint Inhibitors Related Pneumonitis in Patients With Advanced Cancer: A Meta-Analysis

    Get PDF
    Background: Recently, immune checkpoint inhibitors (ICIs) have been proved one of the most promising anti-cancer therapy, series clinical trials have confirmed their efficacy. But they are also associated with distinctive set of toxic effects, which are recognized as immune-related adverse events. Among those immune-related adverse events, pneumonitis is rare, but it is often clinically serious and potentially life-threatening. Although many clinical trial results of PD-1/PD-L1 inhibitors had been reported incidence of pneumonitis, the knowledge based on the individual cohort data from each clinical trial is limited. So we conducted a meta-analysis of trials of PD-1/PD-L1 inhibitors in patients with advanced cancer and compared relative risk and incidence among different tumor types and therapeutic regimens. Such an analysis may provide important knowledge of this rare but clinically significant and potentially serious immune-related adverse event.Methods: Electronic databases were used to search eligible literatures, include randomized controlled trials (RCTs) comparing immune checkpoint inhibitors vs. standard therapies. All-grade (1ā€“4) or high-grade (3ā€“4) pneumonitis events were extracted. The summary relative risk, summary incidence, and 95% confidence intervals were calculated.Results: The incidence of all-grade and high-grade pneumonitis in non-small cell lung cancer (NSCLC) was significantly higher compared with other tumor types, such as Melanoma, urothelial carcinoma (UC), head and neck squamous cell carcinoma (HNSCC) (3.1% vs. 2.0%; p = 0.02, 1.4% vs. 0.6%; p = 0.03). The risk of all-grade pneumonitis was obtained from all patients in both experimental arm and control arm. Treatment with immune checkpoint inhibitors targeting PD-1/PD-L1 did significantly increase the risk of all-grade and high-grade pneumonitis compared with controls (fixed effects, RR: 4.70; 95% CI: 2.81ā€“7.85; p < 0.00001, RR: 3.33; 95% CI: 1.68ā€“6.59; p = 0.0006).Conclusion: The incidence of immune checkpoint inhibitors related pneumonitis was higher in NSCLC than other tumor types. Patients treated with immune checkpoint inhibitor in experiment arms are more likely to experience any grade pneumonitis than control arms. These findings suggest that clinician need to draw more attention on this rare but serious adverse event

    The identities of insulin signaling pathway are affected by overexpression of Tau and its phosphorylation form

    Get PDF
    IntroductionHyperphosphorylated Tau formed neurofibrillary tangles was one of the major neuropathological hallmarks of Alzheimerā€™s disease (AD). Dysfunctional insulin signaling in brain is involved in AD. However, the effect of Tau pathology on brain insulin resistance remains unclear. This study explored the effects of overexpressing wild-type Tau (WTau) or Tau with pseudo-phosphorylation at AT8 residues (PTau) on the insulin signaling pathway (ISP).Methods293T cells or SY5Y cells overexpressing WTau or PTau were treated with or without insulin. The elements in ISP or the regulators of IPS were analyzed by immunoblotting, immunofluorescent staining and co-immunoprecipitation. Akt inhibitor MK2206 was used for evaluating the insulin signaling to downstream of mTOR in Tau overexpressing cells. The effects of anti-aging drug lonafarnib on ISP in WTau or PTau cells were also analyzed with immunoblotting. Considering lonafarnib is an inhibitor of FTase, the states of Rhes, one of FTase substrate in WTau or PTau cells were analyzed by drug affinity responsive target stability (DARTS) assay and the cellular thermal shift assay (CETSA).ResultsWTau or PTau overexpression in cells upregulated basal activity of elements in ISP in general. However, overexpression of WTau or PTau suppressed the ISP signaling transmission responses induced by insulin simulation, appearing relative higher response of IRS-1 phosphorylation at tyrosine 612 (IRS-1 p612) in upstream IPS, but a lower phosphorylation response of downstream IPS including mTOR, and its targets 4EPB1 and S6. This dysregulation of insulin evoked signaling transmission was more obvious in PTau cells. Suppressing Akt with MK2206 could compromise the levels of p-S6 and p-mTOR in WTau or PTau cells. Moreover, the changes of phosphatases detected in WTau and PTau cells may be related to ISP dysfunction. In addition, the effects of lonafarnib on the ISP in SY5Y cells with WTau and PTau overexpression were tested, which showed that lonafarnib treatment resulted in reducing the active levels of ISP elements in PTau cells but not in WTau cells. The differential effects are probably due to Tau phosphorylation modulating lonafarnib-induced alterations in Rhes, as revealed by DARTS assay.Conclusion and discussionOverexpression of Tau or Tau with pseudo-phosphorylation at AT8 residues could cause an upregulation of the basal/tonic ISP, but a suppression of insulin induced the phasic activation of ISP. This dysfunction of ISP was more obvious in cells overexpressing pseudo-phosphorylated Tau. These results implied that the dysfunction of ISP caused by Tau overexpression might impair the physiological fluctuation of neuronal functions in AD. The different effects of lonafarnib on ISP between WTau and PTau cells, indicating that Tau phosphorylation mediates an additional effect on ISP. This study provided a potential linkage of abnormal expression and phosphorylation of Tau to the ISP dysfunction in AD
    • ā€¦
    corecore